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network model and GIS applications
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ABSTRACT
With global climate change, cities face the challenge of increasing
flood disaster caused by heavy rainfall, and the prediction and
assessment of flood disaster risk is a crucial step towards risk miti-
gation and adaptation planning. In this study, a method combin-
ing Bayesian network (BN) model and geographic information
system (GIS), which can capture the potential relationships
between factors impacting flood disaster and has capacity of
quantifying uncertainty and utilizing both data and knowledge-
based sources, was proposed to assess flood disaster risk. The
proposed methodology was applied in a case study to assess
flood disaster risk and to diagnose the reason for flood disaster in
Zhengzhou City, and the results were validated by comparing
with actual situation. The results show that that the relative error
of very-low, low, moderate, high and very-high risk predicted by
the proposed model is 12.57%, 13.21%, 2.23%, 19.63% and
21.65%, respectively, which demonstrates the discriminative
power of the established model. Based on the spatial distribution
of different risk levels, it can be recognized that the flood disaster
risk in Zhengzhou City is decreasing from the middle to the sur-
roundings. The results provide some basis for the field control
and management of urban flood disaster.
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1. Introduction

Expected increases in intensity and frequency of rainfall due to climate change, and
increased paving and loss of water storage space in urban areas is making cities more
susceptible to pluvial flooding. For example, the ‘7.21’ heavy rain in Beijing in 2012,
the Chennai flood in 2015, as well as in 2018, the flood in Jakarta of Indonesia in
February, the northern part of India, Zhengzhou and Shouguang City of China in
July. A series of significant disasters on international communities, like damage to
physical property, interruption of the production of goods and services and loss or
impairment of human life, etc., were resulted from rainstorms and floods, threatening
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the security of society and impairing economic development in cities (Komolafe et al.
2019). It is therefore considerable to identify and assess the potential risk of flood dis-
aster to avoid or manage the level of disaster change and to minimize poten-
tial damages.

In general, two methodologies were discussed to assess the flood disaster risk:
qualitative and quantitative methods (Chen et al. 2015). Qualitative methods mainly
include neural network (Zhao et al. 2019), comprehensive evaluation method based
on fuzzy mathematics (Ming et al. 2018), Dempster–Shafer (D-S) evidence theory
(Abdallah et al. 2013), and so on. However, these techniques are mostly based on
knowledge or experience to determine indicator weight, which lacks the support of
quantitative data and are subject to great subjective influence and as a result, the
evaluation accuracy is not high. Compared with qualitative assessment that rely pri-
marily on experiential knowledge, quantitative methods that formulate facts and
uncover patterns in research based on measurable data is preferred by many research-
ers. Methods for quantitatively assessing flood disaster risk are often based upon
numerical simulations, such as hydrological model and hydrodynamic model (Dang
and Kumar 2017; Abdulrazzak et al. 2019). There are many commonly used models,
such as SCS-CN (Kazak et al. 2018), SWMM (Huang and Jin 2019), DRAINMOD
(Youssef et al. 2018), and so on. These models typically require various types of data
such as rainfall data, basic geographic data and socio-economic data (Wu et al. 2019).
The ability of models is limited by data limitation or data-sparse, such as invalid val-
ues of model parameters, inadequate or erroneous information needed to apply the
models such as input and calibration data, the defective description of relationships
among data, etc. However, in the real world, decision variables in a problem and
their interrelations are often interdependent in a complex and uncertain way. In fact,
the flood disaster risk was collectively formed by disaster drivers, disaster environ-
ment and disaster bearers, including many parameters and data (Ozdemir 2011).
These decision variables and their interrelations are often interdependent in a com-
plex and uncertain way. Disaster drivers such as extreme rainfall are the key factors
of flood disaster, while disaster environment plays a vital role in the redistribution of
rainfall. Meanwhile, the consequence caused by disaster drivers depends on the situ-
ation of disaster bearers, such as the number of people and impacted infrastructure.
Based on the analysis above, qualitative methods lack data support, while quantitative
methods cannot describe the relationship between data. The underlying question is
how to take a more scientific method that can combine quantitative and qualitative
analysis to assess flood disaster risk.

The Bayesian network (BN) model, a representative way of knowledge representa-
tion and reasoning, has many advantages, such as identifying relevant variables and
their relationships in the form of graphical representation, using prior knowledge that
can be learned from actual data to infer and reason (Couasnon et al. 2018).
Therefore, BN model has become a significant tool for dealing with complex problem,
which was widely used in intelligent reasoning (Napolitano et al. 2010), prediction
(Poelhekke et al. 2016), risk analysis (Chen et al. 2019), and so on. GIS (geographic
information system) is an appropriate tool for processing data with attributes for
deriving regional indicators on flood disaster risk (Mahmoud and Gan 2018). It also
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has spatial data operations through powerful spatial analysis and geo-statistical func-
tions for the spatial analysis of flood disaster risk assessment.

The objective of this study is to assess urban flood disaster risk by combing quali-
tative and quantitative analysis based on BN model and GIS. First, on the basis of
factors influencing flood disasters risk, BN structure graph was established to capture
the potential relationships among various influence factors. Then the probability dis-
tribution table of BN model was calculated based on historical disaster data. Finally,
the flood disaster risk in Zhengzhou City was assessed and evaluated using the pro-
posed model, and the distribution of flood disaster risk was obtained from GIS.

2. Materials and methods

2.1. Case study

Zhengzhou, a city in north-central Henan Province, China, located between 112�420

and 114�140 eastern longitude and between 34�160 and 34�580 northern latitude, com-
prises an area of approximately 1010 km2 (Figure 1). The area is characterized as low-
land with an average altitude of 50m, from the southwest to northeast, stepped
down. The average slope in most of the wards (70% of the total area) is below 5� and
only 2.2% of the districts have slope higher than 10�. Zhengzhou is one of the most
populous cities in China and the most densely populated city in Henan province with
about more than 4 million inhabitants. The selected region is in a temperate contin-
ental climate with a mean annual precipitation of 625.9mm. The flood season, a
period of frequent rainstorm and flood disaster, spans from July to September every
year, during which the rainfall accounts for 60%–70% of the total annual rainfall.

Figure 1. Geographical location and specification of the study area.
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According to the statistics, Zhengzhou has suffered heavy rainstorms more than 15
times per year since 2006 and each time a flood disaster has caused more than 30
million dollars in economic losses.

2.2. BN model and GIS description

BN, also known as Bayesian Belief Network (BBN), composed by graphical structure
and Bayes’ theorem, constitutes a widely accepted formalism for representing uncer-
tain knowledge (subjective or objective) and for efficiently reasoning with it
(Guarnieri et al. 2015; Abebe et al. 2018). A complete BN model, as presented in
Equation (1), contains a qualitative component and a quantitative one (Chen et al.
2019). The qualitative component of BN is a directed acyclic graph, where nodes and
directed links signify system variables and their causal dependencies. The quantitative
one of BN model is presented with a set of conditional probabilities or probability
distributions for each child node given its parent nodes in the network.

N ¼ <G,P> (1)

where G is the BN structure graph, G ¼ <V ,E>, V stands for the set of nodes, i.e.
V1,V2, :::,Vn, denoting variables in flood disaster. E represents the set of directed
edges that indicate the causal dependence between nodes, which generally points
from the parent node to the child node; P expresses the parameters set of the BN,
including the prior probability and the conditional probability distribution table
(CPT) of nodes, denoting the strength of dependencies between nodes. It can be
clearly seen from Figure 2, where X, Y and Z represent random variables, and the
arcs with arrow specify the dependencies of the variables. For example, X points to Z,
indicating that X is the parent node of Z, whereas Z is the child node of X. X and Y
have no parent node, which is also called root node. Root node has the prior prob-
ability, while the child node has no prior probability but conditional probability.

Variable

X

Variable

Y

Variable

Z

Very low P(X=X1)
Variable X Probability

Low P(X=X2)
Moderate P(X=X3)
High P(X=X4)

Very high P(X=X5)

Very low P(Y=Y1)
Variable Y Probability

Low P(Y=Y2)
Moderate P(Y=Y3)
High P(Y=Y4)

Very high P(Y=Y5)

X1 Y1

Variable X Variable Y

··· ···
X3 Y2
X3 Y3
··· ···

Variable Z

Z1
P(Z=Z1|X=X1,Y=Y1)

P(Z=Z1|X=X3,Y=Y2)
P(Z=Z1|X=X3,Y=Y3)

Probability

···
P(Z=Z2|X=X1,Y=Y1)

P(Z=Z2|X=X3,Y=Y2)
P(Z=Z2|X=X3,Y=Y3)

···
P(Z=Z3|X=X1,Y=Y1)

P(Z=Z3|X=X3,Y=Y2)
P(Z=Z3|X=X3,Y=Y3)

···

Z2 Z3

··· ··· ···

Prior probability Prior probability

Conditional probability table (CPT)

Figure 2. Representation of a simple BN model.
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GIS is an appropriate tool for collecting and processing data with attributes for
deriving regional indicators on flood risk (Bignami et al. 2018), which is a significant
procedure in effective risk estimation. Building analytic units based on grids or
administrative areas, GIS is capable of integrated modelling on natural conditions
including climate, topography, hydrology, and other social and economic features. It
also has intra-/inter-spatial data operations through powerful spatial analysis and geo-
statistical functions for the spatial analysis of flood disasters and risk assessment.

2.3. The development of BN model

The general framework of assessing flood disaster risk based on BN model was pre-
sented in Figure 3.

From Figure 3, the proposed approach in this study consists of five procedures: (1)
identification of the main factors (drivers of change) that can influence directly or indir-
ectly the occurrence of flood disaster; (2) collection of data from the different data sour-
ces associated with the factors identified in the previous step; (3) development of the BN
structural graph; (4) calculation of probability distribution table based on the BN struc-
ture and (5) the assessment of flood disaster risk and model evaluation.

2.3.1. Selection of criteria and risk factors
In order to identify the main factors affecting directly or indirectly urban flood disas-
ter, a detailed questionnaire survey was designed to gather ideas on recent impacts of
flood in the study area. Flood disaster survey was carried out in May 2019. The ques-
tionnaires were divided into three sections: (1) the interviewee information; (2) the
characteristics of exposure (building, people or others) and (3) the memories of past
flood events, with information on incurred damages and losses to cities. The influenc-
ing factors of flood disaster were also analyzed through the round tables with more
than 10 experts in the field of flood disaster. Several competency questions were

Identify factors influencing flood

disaster

Data collection and processing

Bayesian Network

BN structural diagram

Assess flood disaster risk

Define objective

Evaluate model performance

BN probability

distribution table

Basing

Traing

Figure 3. The general framework of assessing flood disaster risk based on BN model.
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designed to consult them, such as ‘How is flood risk defined?’ ‘Which steps must be
performed to assess flood disaster and which elements must be included in each step?’
and so on. Answering these questions helps further specify factors impacting flood disas-
ter. What’s more, a review of the literature is one of the most important sources for
determining the influencing factors of flood disaster. Most of the journals with the high-
est impact factors in the field of flood disaster and for each one, the most important
publications for the last 10 years have been collected, and some studies that used a com-
bination of factors in flood disaster risk assessment were summarized in Table 1.

Finally, taking the characteristics of the study area into account, the factors
influencing flood disaster risk were identified. Factors that need to be considered
when evaluating flood disaster risk are disaster drivers, disaster environment, dis-
aster bearers, and each factor is composed of a series of sub-factors, all of which
interactively influence and control the dynamic processes of flooding. Disaster
drivers are defined as extreme (severe and prolonged) weather events that
adversely affect human life, property and security. The flood disaster is closely
related to the size of rainfall, the number of rainstorm days and the rainfall inten-
sity. Since the rainfall intensity was calculated through the accumulated rainfall
and rainfall duration, the accumulated rainfall and rainfall duration were used to
characterize disaster drivers.

Disaster environment refers to conditions and surroundings where flood disaster
occurred, determined by factors that mainly result from the combination of both cli-
mate variables and underlying surfaces. Urbanization has profoundly altered urban
land cover, which affects the hydrology that determines flood disaster. Urban catch-
ments have very low permeability and high rainfall-runoff conversion rates.
Furthermore, micro-topography effects can cause localized drainage system failures
(Mousavi et al. 2019). Masoudian and Theobald (2011) studied the effect of topog-
raphy on flood parameters, such as maximum flood discharge and time to peak.
Besides, several studies suggested that the flood disaster also impacted by the distribu-
tion of rivers in cities (Abebe et al. 2018; Bouzembrak and Marvin 2019). Therefore,
the elevation, slope, river network and impermeable area were considered as the most
important factors for flood disaster risk assessment, which play a vital role in the
redistribution of floods.

Disaster bearers are articulated into the human being and social properties affected
by the disaster and its damage. The flood disaster is not only related to rainfall and
urban environment, but also to resilience and adaptability of a region. For example,
the damage caused by flooding is very serious in densely populated areas. The regions
with prosperous economy and convenient transportation show that these areas have
higher adaptability to disaster. Therefore, in this work, population density, road dens-
ity, and per unit GDP were considered as measuring elements of resilience and adapt-
ability. Flood disaster is resulted from the inability of the disaster bearers to adapt or
mediate environmental changes, such as extreme rainfall events.

2.3.2. Overview of the collected data
The BN model for urban flood disaster was developed using the historical case data
during the period 2010–2017 and the flood disaster risk in Zhengzhou City from 16
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August to 20 August 2018 was predicted and evaluated. Consequently, the raw data
related to topography, climatology, river network and land cover in this study were
collected according to the factors influencing flood disaster defined above. All datasets
were then projected, resampled to a 200m grid cell, clipped to the study area and
registered, so all input grids accurately overlaid with the same projection, cell size
and extent. In this paper, Zhengzhou City has been classified into 24,775 grid cells.
Except for zones near the city’s boundary, all grid cells have an area of 0.04 square
kilometers. The data collection and processing are discussed below, and some of the
data were presented in Table A2 in the Appendix.

(1) Rainfall

Rainfall data from 2010 to 2018 was obtained from the China Meteorological
Science Data Sharing Network (http://data.cma.cn) and the Rainfall Station in
Zhengzhou City. Two indices were derived from this: rainfall duration that is the
number of days from the onset of a rainstorm to the end of a flood, and accumu-
lated rainfall that is defined as the total amount of rainfall during a flood. There
are 13 rainfall stations in and around the city of Zhengzhou (Figure 4(a)). Based
on these stations, rainfall for all parts of the city was calculated using kriging
interpolation.

(2) Topographic characteristics

Topography has a significant influence on flood formation and redistribution.
Elevation and slope are regarded as the influencing factors of terrain in flood disaster.
Elevation is commonly represented by the vertical distance from certain surface to
the reference basement. Slope is a measure of the average rate of change of elevation
in a given domain. Both elevation and slope in each study grid cells were generated
from the Digital Elevation Model (DEM) at a 30m resolution, which was downloaded
from the Geospatial Data Cloud Service Platform. And then the two terrain factors
are reclassified in ArcGIS 10.3, which were divided into four levels by block statistics
and grid algebra calculation, as shown in Figure 4(b,c), respectively.

(3) River network

Zhengzhou is bordered by Yellow River to the north and located in upstream of
Jia Lu River, through which several rivers flow before joining the Huai River, which
were collected from National Bureau of Surveying and Mapping Geographic
Information. The distribution of river network plays a crucial role in flood disaster,
especially the density of river and the distance to the river. So, two indices – river
density and river proximity – were designed to account for flood inundation. River
density refers to the length of rivers per unit area, which was calculated from the
Line Density function using 200m radius, and river proximity shows the distance to
the closest river, which was obtained using the Multiple Buffer operator, shown in
Figure 4(d,e), respectively.

2170 Z. WU ET AL.
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(4) Land cover

Land cover is one of the most important underlying factors in the disaster envir-
onment, which can also be downloaded from National Bureau of Surveying and
Mapping Geographic Information. Of particular interest for this study is the relative
proportion of paved surfaces and impervious area. Therefore, impervious area was

Figure 4. Data collection of flood disaster in Zhengzhou City: (a) accumulated rainfall, (b) elevation,
(c) slope, (d) river density, (e) river proximity, (f) impervious area ratio, (g) population density, (h)
per unit GDP, (i) road density.
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estimated by summing up buildings, roads and other paved surfaces. Paved surfaces
divided by the total area is the ratio of impervious area that is recognized as one of
the indicators of impacting flood disaster, as shown in Figure 4(f).

(5) Social and economic features

The flood disaster is not only related to rainfall and urban conditions but also to the
resilience and adaptability of a region. In densely populated areas, the damage caused by
flooding is very serious, which could be at high risk. The regions with prosperous econ-
omy and convenient transportation show that these areas have higher adaptability to dis-
asters. Therefore, in this study, population density, road density, and per unit GDP were
considered as measuring elements of resilience and adaptability, which can be collected
from Zhengzhou Statistical Yearbook and exhibited using ArcGIS, as shown in Figure
4(g–i). Flood disaster is resulted from the inability of the disaster bearers to adapt or
mediate environmental changes, such as extreme rainfall events.

Since BN model generally deals with discrete probabilities, each node is classified
into a finite set of state values accompanying with a probability. For this reason, it is
necessary to discretize all relevant factors. The factors affecting flood disasters were
grouped into four classes, as summarized in Table 2, where accumulated rainfall,
rainfall duration, elevation, slope, river density and proximity were classified

Figure 4. Continued.
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according to recent works (Chen et al. 2015; Yoon et al. 2016; Lin et al. 2017). The
impervious area ratio, road density, population density and per unit GDP were div-
ided through the statistics of land, population and economy of case study and the
information of historical disaster cases.

2.3.3. Model established
Based on the hazardous factors defined, the BN model for flood disaster risk evaluation
was developed, and the technical procedure was composed by two steps: structural learn-
ing and parameter learning, so-called training. The BN structure graph depicts the poten-
tial relationships between factors influencing flood disaster through a directed acyclic
graph. The factors impacting flood disaster defined in Section 2.3.1 were regarded as
nodes in the BN structure graph, while the potential relationships between various influ-
encing factors were seen as the relationships among different nodes. In this study, the
potential relationships between various factors were determined by the genetic mechan-
ism of flood disaster, experts’ experience and empirical knowledge.

Given the BN structure graph, certain learning algorithms, such as Bayesian esti-
mation and maximum likelihood estimation can be used for parameter learning
through training from sample data to determine the conditional probability distribu-
tion among related variables (Vogel et al. 2014). The maximum likelihood estimation
algorithm is generally used for large data size and the parameters estimated using this
tool coincide well with the actual state. In this research, many data related to rain-
storms and floods could be gathered from various data sources, so the maximum like-
lihood estimation algorithm is more suitable for parameter learning in this paper.
This method seeks to find the parameters that maximize the likelihood function, and
the working principle is as follows (Han and Coulibaly 2017):

It is assumed that the observed data setD ¼ fY1,Y2, :::,Yng is independent and
uniformly distributed, and the likelihood function of D is functional to the model
parameters, which can be computed as:

PðDjhs, ShÞ ¼
YN

i¼1

PðYijhs, ShÞ (2)

where hs represents an unknown parameter; Sh refers to the structure of BN. Since
the observed data set D has been determined, the parameters can be obtained by
maximizing the likelihood function.

Table 2. Classification of different risk factors.

Factors
Classes

Low Moderate High Serious

Accumulated rainfall (mm) <50 50–100 101–150 >150
Rainfall duration (d) <1 1–2 2–5 >5
Elevation (m) <100 100–150 151–200 >200
Slope >10� 6�–10� 1�–5� <1�
River density (per km2) <0.2 0.2–0.5 0.6–0.8 >0.8
Proximity (m) >1500 1001–1500 500–1000 <500
Impervious area ratio (%) <25 25–26 27–28 >28
Road density (per km2) >4 3–4 1–2 <1
Population density (per km2) <3000 3000–4500 4501–6000 >6000
Per GDP (billion Yuan per km2) >5 4–5 2–3 <2
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In parameter learning, the updated probability for the m number of mutually
exclusive variables or parameters Viði ¼ 1, 2, :::,mÞ, and given evidence or data D,
was determined by the following relationship:

pðVjjDÞ ¼
PðDjVjÞ � pðVjÞPm
i¼1pðDjViÞ � pðViÞ (3)

where pðVijDÞ is the posterior probability of V based on the data or evidence D;
PðVjÞ refers to the prior probability; pðDjVjÞ denotes the conditional probability.

The proposed model was evaluated by comparing with actual situation. Zhengzhou
City has been divided into 24,775 grid cells. The number of grid cells per risk class
for predicted and actual conditions were counted, respectively. The prediction accur-
acy of BN model was quantified by analyzing relative error of prediction, which is
defined as follows:

Re ¼ jypre � yactj
yact

� 100% (4)

where Re refers to the relative error of prediction; ypre and yact denote the number of
cell grids for predicted and actual, respectively.

As a large amount of data was collected and processed in this study with high
computational workload and difficulty, the machine learning method was proposed
to develop and test BN model. Examples of software commonly used in constructing
BN are MATLAB-BNT, Netica, GeNIe (Lohr et al. 2017; Sahin et al. 2019). GeNIe
provides an interface for introducing data, where data can be directly imported from
Excel or database. Besides, it not only has a variety of algorithms that is helpful for
structure and parameter learning, which facilitates logical reasoning of the problem
being studied, but performs sensitivity analysis on simple graphs to calculate their
impact on the results. Acknowledging these qualities, GeNIe software was used for
accomplishing the construction, reasoning and verification of BN model.

3. Results and discussion

3.1. Construction of BN for urban flood disaster risk evaluation

BN model for flood disaster risk evaluation in Zhengzhou City was established using
the methodologies presented in above. The developed model, the nodes together with
their corresponding states, were presented in Figure 5. The model contains four
groups of factors: (1) flood disaster (white node): the level of flood disaster risk was
classified according to the probability of flood disaster; (2) a group of disaster drivers’
factors (blue nodes), namely: accumulated rainfall and rainfall duration; (3) a group
of disaster environment (red nodes) that are river density, proximity, elevation, slope
and impervious area ratio and (4) factors of disaster bearers (yellow nodes) which
include population density, road density and per unit GDP. The state of these nodes
is given in the squares (e.g. the node ‘Elevation’ has different altitudes such as low,
moderate, high or serious). In each square, the bars represent the probabilities of the
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state, expressed as percentage. For example, the node of ‘Elevation’, with reference to risk
classification defined in Table 2, 57% of the elevation are below 100m that is represented
using the state of ‘low’; ‘moderate’ indicates that the elevation is between 101 and 150m
with a probability of 32%; ‘high’ means that elevation ranges from 151 to 200m and its
probability is 8%, and ‘serious’ indicates that the probability of being over 200m is 2%.
The node of ‘flood disaster’ expresses the probability of flood disaster, and the flood dis-
aster risk was classified into different grades through these probability values. Therefore,
according to these probability values and based on the characteristics of case study, the
risk of flood disaster was divided into five grades: very-low, low, moderate, high and
very-high, and their corresponding probability were presented in Table 3, respectively.
From this table, if the probability of flood disaster calculated in BN model is less than
0.2, showing that the risk of flood disaster is less likely, it can be regarded as very-low
risk. That’s how the rest of the grades were determined.

From Figure 5, it is noted that the remaining 10 factors directly or indirectly affect
the occurrence of flood disaster. The connected nodes have potential relationship,
among which the initial node of the arrow is the cause while the pointing node is the
effect. This potential relationship can be expressed by the conditional probability cal-
culated based on historical data (Equation (3)), which can be queried by attribute of
each node. Taking the node ‘slope’ as an example, the conditional probabilities of this
node were shown in Table A1 in the Appendix, which allowed several queries of con-
ditional probabilities of different states.

3.2. Assessment of urban flood disaster risk based on BN

Using the developed BN model under the specific 2010–2018 conditions, the expected
probability values of flood disaster risk for all the 24,775 grid cells in Zhengzhou City

Figure 5. BN model for flood disaster risk assessment.
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were respectively predicted and summarized in Table 4. The summarized results in
Table 4 emphasize the changes between risk classes aggregated per cell, which can be
a good quantitative measure of the performance of BN model. In this table, the num-
ber of cells corresponding to different levels of risk for actual flood disaster condi-
tions were obtained from historical case information, while the number of grids for
prediction were obtained from the proposed model. It can be seen that most grids
record a low or moderate risk, while few cells are at very-high risk. Further analysis
was shown in Figure 6.

In Figure 6, a flood disaster risk map was delineated as an output from the BN
model. For each risk class, combined with the relevant data in Table 4, the percentage
of the study area was calculated. About 19% of the total study area was classified as
very-low risk and 34% is low risk, suggesting that these regions are less likely to suf-
fer from flood disaster, whereas 16% grids were found to have high risk, plus another
8% were very-high risk. From the pattern, the downtown areas could be at high risk,
while the eastern and northern areas that are new city zone with low density of prop-
erty and population have low risk. Overall, it can be recognized in Figure 6 that the
flood disaster risk in Zhengzhou City is decreasing from the middle to the surround-
ings, which is basically consistent with the results of other studies in this area (Lin
et al. 2017), devoting to risk management of urban flood disaster. Therefore, accord-
ing to these results, strategies to cope with and prevent flood disaster should be pro-
posed to reduce losses for different regions. For example, in low-risk areas, risk
reduction should be targeted towards individual protection, especially the elder and
children. While for the high and very-high risk, measures should be targeted towards
building municipal economic support funds to help affected inhabitants (after a flash-
flood event) during the recovery phase. Moreover, in high and very-high risk area, it
is necessary to employ more advanced methods for forecasting rainfall and encourage
the application of new technology, such as radar and remote sensing to improve fore-
cast accuracy and lead time.

3.3. Model performance

The predicted probability of flood disaster risk was validated by comparing with the
number of grid cells of actual disaster situation. Based on the statistical results,
Equation (4) was used to calculate the relative error of this method, as shown in
Table 4. According to the comparison of relative errors, the model has the smallest
error in the prediction of moderate risk, followed by low and very-low risk, whose
relative error is within 15%. The relative error of very-high risk is the highest, at
21.65%. It can be concluded that compared with low and moderate risks, the predic-
tion of high and very-high risks by this model is poor, which may be due to the spa-
tial aggregation of high-risk areas.

Table 3. Classification of flood disaster risk.
Classes Very-low Low Moderate High Very-high

Probability <0.2 0.2–0.4 0.4–0.6 0.6–0.8 �.8
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Moreover, the distribution of actual flood disaster risk obtained from historical
case was used as a surrogate for ground truth for the verification of the results
obtained from BN model. The distribution of flood disaster risk was obtained
from the case of historical disaster case of Zhengzhou City, as shown in Figure 7,
which provides a partial verification of the modelling approach. Since the north
and east are new city zones with low urbanization rate and population density,
most of them were at low and very-low risk, coinciding well with the locations
derived from predictive results using developed BN model. Compared with low
risk, this model was unsatisfactory in high and very high risk. Wards being at
very-high risk were mainly located in the central with high urbanization rate, flat
terrain and dense population, whereas the high-risk areas obtained from BN
model were located at the middle and southwest. It is speculated this may be due
to the higher terrain in southwest, so the flood disaster risk is lower than
expected. It can be observed that although there are still certain mismatches
between predicted and actual conditions, the developed flood disaster risk evalu-
ation model can predict the general distributed trends of flood disaster risk. From
the above analysis, it is concluded that distinguishing from the previous studies of
determining index weight based on empirical knowledge, the constructed BN
model can objectively determine relationships among different influencing factors
and quantitatively infers the probability of flood disaster risk based on a large
number of historical disaster data, which effectively reduces the subjectivity and
uncertainty in the evaluation and provides a new way for flood disaster
risk assessment.

3.4. Sensitivity analysis

Because many factors are being produced with different sets of input variables, the
BN model learns and records the relative importance of the input variables in pre-
dicting the output. Sensitivity analysis was applied in the BN model to find variables
that strongly affect the behaviour of a system and to determine variables that are not
very sensitive to changes in the process of assessing flood disaster risk (Bouzembrak
and Marvin 2019). The sensitivity to different factors for the target node ‘flood disas-
ter’ was presented in Figure 8. The depth of node colour demonstrates the sensitivity.
And the sensitivity value of each factor influencing flood disaster risk was exhibited
in Table 5 that summarized the parameters according to their level of influence on
flood disaster. According to the sensitivity values of different factors, variables related
to disaster drivers, i.e. rainfall and duration, have the greatest impact on flood disas-
ter, followed by population density, road density and per unit GDP, which affects the
possibility of flood disaster to some extent. It should be noted that although the sen-
sitivity value of some factors is low, it does not mean these are not vital elements in

Table 4. The number of grid cells per risk class for predictive and actual conditions.
Classes Very-low Low Moderate High Very-high

Predictive value 4783 8483 5774 3938 1607
Actual value 4249 9774 5648 3592 1321
Relative error (%) 12.57 13.21 2.23 19.63 21.65
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pluvial flood, which is particularly evident for variables related to disaster environ-
ment (e.g. elevation, slope, river network, etc.). Among the many factors affecting the
flood disaster risk in Zhengzhou City, the variables related to disaster drivers are
the most influential factors on flood disaster, followed by disaster bearers, while the
impact of disaster environment is relatively weak. Several reasons can be used to
explain this. Zhengzhou City is characterized as lowland, and there are little changes
in elevation and slope. The elevation and slope have direct effect on trend of most
rivers. Therefore, disaster environment has lower sensitivity value, partly due to their
almost uniform across the case study, which has an unnoticeable impact on the flood
disaster. In view of this sensitivity analysis, it is necessary to strengthen the rainstorm
forecast in the future to prevent the occurrence of disasters in advance. This can be
achieved by applying more advanced methods for forecasting rainfall, encouraging
the application of new technology, such as radar and remote sensing to improve fore-
cast accuracy and lead time, and so on. In addition, it is important to facilitate eco-
nomic development and enhance the individual and collective adaptability to reduce
the losses caused by flood (Abebe et al. 2018).

3.5. Comparisons with other methods

Some experts have used BN model to assess flood disaster vulnerability. The most repre-
sentative study was developed by Abebe et al. (2018). Urban flood disaster vulnerability
in Toronto was assessed using BBN model, and the results were validated by comparing
with the number of approved basement flood subsidy protection programme applications
(BFSPP). However, in this study, the BBN model focused more on describing the impact
of various factors on vulnerability, but fails to fully describe the relationships between the
flood disaster influencing factors. What’s more, the conditional probabilities in BBN were
learned using expectation-maximization that is suitable for less data, while the maximum
likelihood estimation used in our study seems to be more general. It is important to
have high-resolution data to conduct a more robust investigation. In the BBN model, the
city of Toronto was classified into 760 grid cells at a 1 km resolution, which may be not
meet the requirements of high-precision evaluation. As for the model evaluation, the
approved BFSPP was used to validate the prediction output in the research developed by
Abebe et al. (2018), which may be not applicable in most of the cities that are lack of

Figure 6. The distribution of flood disaster risk obtained from BN model.
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BFSPP. Compared with this, it is more universal to evaluate the model performance eval-
uated based on relative error.

Besides, Lin et al. (2017) proposed a flood disaster vulnerability evaluation method
based on analytic hierarchy process (AHP) in Zhengzhou City. The results show that
the flood disaster vulnerability in central and eastern regions appears to be high,
which is in agreement with the distribution of risk obtained from the present study,
but the results obtained from BN model are more reasonable than the one based on
AHP. The determination of index weight based on AHP lacks the support of quanti-
tative data and has great subjectivity, while the BN model established in this study
takes advantage of objective data, which reduces the uncertainty caused by the deter-
mination of index weight and as a result, the results of flood disaster assessment are
more accurate and reliable.

It is expected that the methodologies adopted in this paper would better predict
such flood events with BN model. There are still many problems in the research,
such as the accuracy of data, the comprehensiveness of indicators. So how to obtain

Figure 7. The distribution of flood disaster risk obtained from historical disaster cases.

Figure 8. Sensitivity analysis showing the effect of each factor on flood disaster.
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high-quality data and constantly improve the evaluation index system is the focus of
future study. Besides, all the data were discretized for use in BN model.
Discretization breaks of numeric variables are either suggested by experts or uni-
formly distributed, lacking hypotheses on which to base discretization, further ana-
lysis could focus on the effect of discretization.

4. Conclusions

A method for the assessment of flood disaster risk was proposed, where spatial grid
data for input, storage, analysis, and mapping was explicitly processed using GIS and
flood disaster risk was assessed and analyzed based on BN model. The case study
revealed that the relative error of very-low, low, moderate, high and very-high risk
predicted by the BN model is 12.57%, 13.21%, 2.23%, 19.63% and 21.65%, respect-
ively, which demonstrates the discriminative power of the established model. Based
on the spatial distribution of different risk levels, it can be recognized that the flood
disaster risk in Zhengzhou City is decreasing from the middle to the surroundings.
The proposed methodology in this paper is distinct from previous researches that
predict the probability of flood disaster risk deterministically, giving additional insight
for the decision-makers into the uncertainty related to the analysis, which also has
significant implications to risk assessment in other fields.

However, there is much room for further improvement. The established BN model
in this study was not comprehensive, and more factors influencing flood disaster,
such as drainage pipe network in city, must be included in the future. Besides, the
accuracy of the model needs further improvement by improving data quality.
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Table A2. Part of the data needed to establish BN model.

Rainfall Duration Elevation Slope
River
density Proximity

Impervious
area ratio

Road
density

Population
density

Per unit
GDP

42.3803 3.5691 85.0367 0.7549 0.1338 325.7522 0.2602 0.3753 1063.9719 2.5647
47.3370 3.7603 92.2568 1.7210 0.0098 1689.1958 0.2652 0.4984 1503.4529 2.5647
48.2439 3.8021 87.3768 3.5204 0.0098 1641.7663 0.2652 0.4775 1508.3979 2.5647
49.1788 3.8428 88.0125 6.6712 0.0098 1618.0892 0.2652 0.4069 1514.3389 2.5647
50.1359 3.8814 90.6743 3.5843 0.0098 1615.5000 0.2652 0.3611 1495.7980 2.5647
51.1104 3.9168 91.5679 2.7199 0.0098 1625.0048 0.2652 0.2969 1503.6628 2.5647
43.9994 3.5023 89.2456 0.7549 0.0098 1270.5646 0.2652 0.2300 1434.1218 2.5647
96.3367 4.0162 85.4689 0.3376 0.6713 935.7428 0.2598 0.0905 1088.3329 2.5647
97.9131 4.0162 86.5690 4.2627 0.5451 1126.1015 0.2594 0.3542 1061.9000 2.5647
42.7387 3.8786 84. 0048 1.6876 0.4991 1123.5000 0.2591 0.4136 1051.5468 2.5647
95.7212 4.0162 82.6709 2.7199 0.4827 922.5000 0.2599 0.1796 1115.5490 2.5647
99.3056 4.0162 86.1245 0.0000 0.1729 979.0412 0.2590 0.4960 1070.6342 2.5647
100.0720 4.0162 84.3567 0.7549 0.0870 1049.0074 0.2588 0.5095 1053.9352 2.5647
42.8073 3.8650 84.8921 2.7199 0.1357 1068.1117 0.2586 0.5152 1042.9537 2.5647
93.8021 4.0162 83.3567 1.9679 0.7767 721.5000 0.2607 0.0319 1798.5608 2.5647
99.9347 4.0162 81.0912 1.2171 0.3909 924.3064 0.2592 0.5144 1087.2073 2.5647
100.7067 4.0162 79.5680 1.3502 0.3784 785.0175 0.2589 0.4961 1075.3728 2.5647
101.4671 4.0162 83.2765 2.1608 0.3439 676.9538 0.2587 0.4757 1063.5380 2.5647
102.2154 4.0162 80.6432 1.8175 0.3278 617.3188 0.2585 0.4452 1045.8710 2.5647
95.5568 4.0162 82.1367 1.3502 0.4466 704.4221 0.2608 0.4840 1793.6859 2.5647
100.1021 4.0162 89.5789 1.0675 0.3764 503.2360 0.2597 0.4940 1251.6614 2.5647
88.5429 4.0162 83.2341 2.7199 0.7155 343.4234 0.2622 0.1872 1825.1486 2.5647
75.7942 4.0162 102.3567 2.1343 0.8538 153.4407 0.2642 0.3228 1553.5922 2.5647
79.4084 4.0162 98.0934 1.3918 0.7375 728.0580 0.2638 0.4740 1626.9698 2.5647
83.4317 4.0162 113.1432 2.2636 0.6085 1528.6126 0.2631 0.4906 1740.3053 2.5647
84.4192 4.0162 110.6752 3.1996 0.5924 1583.3536 0.2630 0.4632 1757.6978 2.5647
101.2387 4.0162 80.5732 2.1343 0.6138 103.5000 0.2595 0.3188 1654.5375 2.5647
104.3400 4.0162 106.6864 2.6990 0.5845 407.2935 0.2588 0.4297 1463.8213 2.5647
105.1299 4.0162 94.6709 0.9548 0.5461 299.8575 0.2586 0.3715 1404.9185 2.5647
105.9074 4.0162 87.5421 2.4564 0.5001 207.8894 0.2583 0.1361 1341.9906 2.5647
124.1190 4.0162 81.7809 1.2171 0.6562 185.3335 0.2547 0.2703 3378.9705 2.5001
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